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Introduction 

For efficient coalition mission planning of NATO forces under different terrain scenarios and for 

selection of capable vehicles, reliability-based stochastic off-road mobility maps are developed. 

Traditionally, the analysis considers nominal deterministic values  of key variables involved in the terrain 

properties and terramechanics simulation model. The generated deterministic mobility maps could be 

around 50% reliable and thus cannot be used effectively in mission planning of NATO forces under 

different terrain scenarios and for selection of capable next generation combat vehicles. Thus, it is 

desirable to develop reliability-based stochastic mobility maps (i.e., Speed-Made-Good and GO/NOGO) 

that can provide desirable reliability levels in determining mobility of military vehicles across various 

terrains. 

Key variables of off-road conditions include those related to terrain elevation data and soil property data 

as shown in Fig. 1 [1]. The ground vehicle parameters and their variabilities could also be addressed for a 

full stochastics treatment, but were not considered in this study. The terrain elevation data are usually 

obtained using remote sensory techniques (i.e., radar technology, imagery methods, etc.). Those 

techniques lead to uncertainty in terrain data values as well as the spatial position of data points. Thus, 

any elevation model of the terrain includes uncertainty. Digital Elevation Models (DEMs) produced by 

the US Geological Survey agency  are a good example of this issue. Spatial variability of physical terrain 

properties (e.g. soil bulk density, cohesion, internal friction angle, Bekker-Wong parameters, etc.) also 

leads to uncertainty in vehicle-terrain interaction models. In addition, measurement methods of the soil 

properties are uncertain in nature. 

The current NRMM output is given in terms of a deterministic mobility map [2, 3]. This map shows the 

means of cross-country speed between two points in a given region for a given vehicle. As 

recommended by Refs. 4 and 5, a stochastic analysis should be carried out in terms of probability 

densities and reliabilities. However, previous attempts to convert NRMM from a deterministic 

framework to a stochastic one have failed in the origin of uncertainties. No formal mathematical 

reasoning about the uncertainty types that need to be introduced in the simulations was given in Refs. 

[4, 5, 6]. Also, the current NRMM does not support autonomous mobility (this issue was pointed out in 

Ref. [7]). While this capability is highly desirable in the NG-NRMM because current and future defense 

forces include autonomous systems, it was not considered by Thrust Area 5. 

 STO-TM-AVT-308 J - 1



Fig. 1: NG-NRMM Mobility Map Generation [1] 

Uncertainty quantification (UQ) was carried out for speed made good for the AVT-308 CDT event. This 

work was carried out in collaboration with the software vendors and KRC. The stochastic map for each 

vendor’s terramechanics vehicle was generated following the UQ framework for generation of 

stochastic mobility maps as defined in Chapter 6 of the AVT-248 final report. The reader is referred to 

that report for details on the UQ framework and process. 

Elevation and Slope Input Variability 

The variability in elevation was provided by KRC and there were two different resolutions for elevation 

variability, one for ±9 m and the other for ±3 cm. Fig. 2 below shows the map that defines the elevation 

variability for the high- and low-resolution areas. The elevation variability was assumed to have a normal 

distribution with the mean set as the measured elevation and the standard deviation set to match the 

±9m or ±3cm depending on the geospatial location. Using the elevation variability, a 1000 elevation 

realization rasters were generated. ArcGIS was then used to calculate the corresponding slope for each 

of the 1000 elevation realization rasters. The slope variability is shown in the maps below in Fig. 2. The 

90% slope means there is 90% probability that the maximum slope is less than or equal to the slope 

value shown in the map. 
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Soil Type Number of Data

2NS Sand 8 

Coarse Pit 6 

Fine Grain Pit 9 

Rink Natural 4 

Stability 4 

Once the distribution types to be used for each soil parameter and soil type were determined, the 

design of experiment (DOE) points were generated. The DOE points were generated using RAMDO 

software dynamic Kriging (DKG) fitting process. The RAMDO DKG fitting process generated DOE points in 

the variance window, i.e., the domain defined the variability of the soil parameters. The generated DOE 

Fig. 2: Elevation and Slope Variability 

The KRC collected soil data using the bevameter and laboratory testing, the reader is referred to the 

AVT-308 final report KRC portion for details on the testing conducted. The soil parameter properties 

were available for each of the five soil types at KRC.  

Simple Terramechanics Input Variability 

For simple terramechanics the Bekker-Wong parameters, obtained from the bevameter testing data, 

were used as the input soil parameters for the simple terramechanics simulations. The number of 

measurements for each soil type and property varied anywhere from four to nine as shown in Table 1 

below. These data were then used to determine one of the standard distribution types that best fits the 

data. During the fitting process it was assumed all soil properties were independent, i.e., not statistically 

correlated with each other. That assumption was made because the number of data was so few, four to 

nine points, that it was not meaningful to determine any statistical correlation. That is, the process 

would be difficult and not straight forward being the number of data was so few. 

Table 1: Soil Type and Number of Data 
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Soil Type Soil Group Number of Data 

2NS Sand 
Sand 20 

Coarse Pit 

Fine Grain Pit Silt 9 

Rink Natural 
Sandy Loam 18 

Stability 

Peat Peat N/A 

Using the larger data sets the fitting of known distributions for each parameter was done. The 
distributions that best fit each soil parameter for each soil group are shown in Table 3. During the fitting 
it was noticed that the fitting of most of the distributions were similar with some having wider tails than 
others. This would be expected because the number of data used for fitting the distributions was small. 
Using the larger data sets for the soil groups the statistical correlation between Keq and n was studied 

and the best fitting copula type and the corresponding Kendall’s tau for the correlation are shown in  

Table 4. Fig. 3 and Fig. 4 show the contour plots of the joint distributions for Keq and n for sand and silt, 

the data used for fitting the joint distribution is shown as well. Studying Fig. 3 it is seen that the 2-sigma 

contour of the joint distributions captures almost all of the 20 data points used to fit the distribution and 

identify the copula type. However, the joint distribution covers the area shown by the green 4-sigma 

contour in the plot. This raises the question if the distribution is too wide and if the true underlying joint 

distribution would cover an area much closer to the area covered by the 2-sigma contour shown in the 

plot. In order to better fit the true distribution to see this, more data points would be needed. The same 

question arises when studying the joint distribution for Keq and n for silt shown in Fig. 4. 

points were then provided to the software vendors for them to carry out vehicle dynamic analysis and 

return the speed made good.  

These DOE points raised several questions and issues from the vendors. One issue raised was that the Kc 

and Kphi values for some of the DOE points were negative. The vendors were not able to run the DOE 

points that negative values for Kc and Kphi. In order to overcome this difficulty, it was proposed by one 

vendor, Dr. Wong, to use Keq instead of Kc and Kphi. [REFERENCE to Dr. Wong’s report – writeup on 

what to do with negative parameters] The KRC then took the original bevameter data gathered and 

calculated Keq for all the measurements. The second issue raised was that some of the DOE points for 

the Keq and n parameters seemed to create a soil type that was not physically meaningful, e.g., a soil 

that is as firm as concrete or even firmer. It was determined that this happened for two reasons. The 

first was that it was assumed the soil parameters were independent, when in fact there should be some 

statistical correlation between the parameters. The second, was that the number of data points for each 

soil type was so few, the distributions fitted to these data points were probably wider than the true 

variability.  

In order to try to overcome this issue it was decided that some of the KRC soil types be grouped 

together and treated as one soil type in order to assemble a larger data set for a given soil type. This 

grouping also allowed data from Ref. [8] to be aggregated with the KRC data to create a larger data set. 

The grouping of the soil types and number of data for group is shown in Table 2 below. 

Table 2: Soil Groups and Number of Data 
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Table 3: B.W. Soil Parameter Distribution Types 

Soil 
Group 

nAvg for 
Keq 

Keq C 
Grouser 

Phi 
Grouser 

Kavg 
Grouser 

C Rubber Phi 
Rubber 

Kavg 
Rubber 

Sand Weibull Gamma Weibull Normal Gamma Exponential Normal Gamma 

Sandy 
Loam 

Lognormal Exponential Weibull Weibull Gamma Exponential Weibull Gamma 

Silt Weibull Exponential Weibull Weibull Gamma Exponential Weibull Gamma 

Peat Weibull Exponential Weibull Weibull Gamma Exponential Weibull Gamma 

Table 4: Identified Copula Type 

Soil Group Copula Type Kendall’s Tau 

Sand Frank 0.37 

Sandy Loam A14 0.68 

Silt Gumbel 0.6 

Fig. 3: Joint Distribution Contours for Sand 
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Fig. 4: Joint Distribution Contours for Silt 

Using the newly identified distributions, new DOE points were generated. The software vendors seemed 

to believe these new DOE points represented real-world physical soils more closely, but there were still 

a few points that might be questionable. However, without having more data to fit a distribution that is 

much closer to the true distribution, it is not possible to generate better DOE points. The number of data 

points needed to try to fit a distribution that is much closer to the true distribution is unknown. It really 

depends on how complex the distribution is, the number of points needed might range anywhere from 

fifty, to several hundred or even several thousand. The new DOE points were evaluated by the software 

vendors. The software vendors supplied the calculated speed made good for the new DOE points. The 

dynamic Kirging (DKG) model for each soil group, for each vendor was created. Using the sequential 

sampling process in RAMDO additional DOE points were generated, evaluated by the vendors and speed 

made good results used to refine the DKG model to improve the accuracy of the DKG model.  

Complex Terramechanics Input Variability 

For the complex terramechanics simulation, the input soil parameters used were not the Bekker-Wong 

parameters, but were slope, friction angle (Phi), cohesion (C), and bulk density. The slope variability was 

the same as previously described. For the complex terramechanics the original five soil types shown in 

Table 1 were used. The complex terramechanics vendor analyzed the laboratory testing data provided 

by KRC for the friction angle, cohesion, and bulk density in detail. From their experience they provided 

what they thought were reasonable lower and upper bounds for the variability of the three parameters, 

as well as what they thought the mean value was for the three parameters. A generalized extreme value 

distribution was fitted for each soil type using the provided information. Fig. 5 ‒ Fig. 9 show the 

distributions fitted for the friction angle phi, cohesion C, and bulk density for each of the five soil types. 

It was assumed that all the parameters are statistically independent. The DOE points for complex 
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terramechanics were then generated and provided to the vendor for evaluation. The DKG model was 

created using the provided speed made good results.  
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Fig. 5: Fine Grain Pit Distributions for Phi, C, and Bulk Density 

Fig. 6: Coarse Pit Distributions for Phi, C, and Bulk Density 
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Fig. 7: 2NS Sand Distributions for Phi, C, and Bulk Density 

Fig. 8: Rink Natural Distributions for Phi, C, and Bulk Density 

STO-TM-AVT-308 J - 9



Fig. 9: Stability Distributions for Phi, C, and Bulk Density 
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Uncertainty Quantification of Speed Made Good 

After fitting the DKG models for both the simple and complex terramechanics methods, uncertainty 

quantification of the speed made good was conducted. Realizations from the distributions were 

generated and evaluated using the DKG models to generate speed made good realizations, i.e., the 

speed made good distribution. The distribution of the speed made good was calculated for each cell in 

the raster defining the KRC area for the CDT event. Using the speed made good distributions, the 

stochastic speed made good maps were generated. 

The 90%, 50%, 10% stochastic maps and deterministic maps are shown in Fig. 10 and Fig. 11 for simple 

and complex terramechanics, respectively. The deterministic map is the map generated if no variability 

is considered and deterministic values of the soil parameters, typically mean values, are used. The 

deterministic slope used is calculated from the measured elevation values and does not consider any 

variability in the elevation or slope. The 90% speed made good map means there is 90% probability that 

the maximum obtainable speed is greater than or equal to the speed shown in the map. As you decrease 

the probability level, for example going from 90% to 50%, the speed in the map will increase. This means 

the speed shown the 50% map is going to higher than the speed shown in the 90%, however, there is 

only 50% probability of actually obtaining the speed shown in the 50% map. 

Studying the loop in the lower righthand corner of the speed made good maps shown in Fig. 10, we can 

see how the speed in the map changes depending on if you are looking at the 90%, 50%, 10%, or 

deterministic map. In the 90% map the speed on the loop looks to range between 30-40 km/h, in the 

50% map the speed on the loop looks to range between 60-70 km/h, in the 10% map the speed on the 

loop looks to range between 110-130 km/h, and in the deterministic map the speed looks to range 

between 110-130 km/h. Thus, it looks like there is only about 10% probability of obtaining the speed 

shown in the deterministic map for that loop. Other areas of the deterministic map look to have 

different probabilities of obtaining the speed shown. For example, the green circle areas on the left side 

of the maps look to be green in the 90%, 50%, 10%, and deterministic map. Therefore, there is about 

90% probability of obtaining the speed shown in the deterministic map for those circle areas. This shows 

that deterministic map may not be reliable in providing the actual speed made good. This is further 

illustrated in Fig. 12, which shows the simple terramechanics deterministic speed made good (top map) 

and corresponding probability level maps (bottom map). The probability level map shows the probability 

of obtaining the speed value shown in the deterministic speed made good map. As seen in the 

probability map, the probability ranges from 0-90%, thus, the speed made good values provided by 

deterministic map are not reliable. 

It is interesting to compare the speed made good maps obtained using the simple terramechanics as 

shown in Fig. 10 to those obtained using the complex terramechanics as shown in Fig. 11. The maps 

show similar patterns, the higher speed areas agree between the two, however, the actual speed value 

does not agree well. For example, the speed of the circle areas on the left side of the 90% simple 

terramechanics map ranges between 110-130 km/h, while for the same area in the complex 

terramechanics map the speed ranges between 60-70 km/h. The speed range for this area for the simple 

terramechanics is almost double that of the complex terramechanics for the same area.  

This raises the question why the two different maps do not agree with each other. There is a long list of 

possibilities. Maybe one of the two models does not predict correctly, maybe the distributions used for 

the soil parameters do not capture the true distribution very well, etc. This leaves room for future work 
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to be carried out to study the differences between the simple and complex terramechanics models, the 

soil parameters used in both, the need for more soil data and better identification of the distribution 

and correlation for the soil data. 

The large patterns of the speed for both simple and complex terramechanics look to correspond to the 

soil type. This can be seen by comparing the speed made good maps in Fig. 10 and Fig. 11 to the soil 

type map shown in Fig. 13. For example in Fig. 13 the peat soil type is shown as the purple color, this 

purple area is similar to the lowest speed areas, i.e., reddish colored areas in the speed made good maps 

shown in Fig. 10 and Fig. 11. Thus, one general conclusion might be that when on peat soil the speed will 

be lower. This shows that knowing the correct soil type as well as having enough data to identify the 

correct distributions and correlation of the soil parameters is critical for obtaining accurate stochastic 

speed made good maps. This is also explaining why even in the stochastic speed made good maps there 

is little variability in the speed for large areas in the map. 

One possible use of the speed made good map is for path planning in order to find the optimal route for 

getting from point A to point B. Fig. 14 below shows the optimal path between two points for the 90%, 

50%, 10%, and deterministic maps. The path provided by the deterministic map is the path when no 

variability is taken into consideration. The path provided by 90% map, gives the path that has 90% 

probability of obtaining the speed given by the 90% speed made good map, along the path. Likewise, 

the path provided by 50% and 10% maps have 50% and 10% probability of obtaining the speed along the 

path, respectively. Comparing the different paths, it is easily seen that the 90% and deterministic paths 

are different with just a few segments that are the same along the paths. The paths provided by the 50% 

and 10% look to more closely match that of the path given by the deterministic map. The 90% path is a 

more conservative path because there is 90% probability of obtaining the speed along the path. 

Therefore, the 90% path will most likely not be the fastest path as seen in Fig. 14. However, one 

interesting point is that, the 90% path in this case is a shorter distance path at 1.58 km than the 

deterministic path at 1.63 km. Fig. 15 shows the 90% path compared to the deterministic map with the 

probability of some segments of the deterministic path labeled. This figure clearly shows how the 

deterministic path is not a reliable path, some segments of the path only have 0-10% probability of 

obtaining the speed along the path, while another segment has 40-50% and another 80-90% probability 

of obtaining the speed along the path. Thus, if the deterministic path is used, the probability of being 

able to make it from point A to point B is unknown, if it is even possible to make it between the two 

points and the predicted time is most likely inaccurate. Thus, for missioning planning the stochastic 

mobility maps provide valuable information to the decision maker planning the path, leading to 

increased mission success.
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Fig. 10: Simple Terramechanics Speed Made Good Maps 

STO-TM-AVT-308 J - 13



Fig. 11: Complex Terramechanics Speed Made Good Maps 
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Fig. 12: Simple Terramechanics Deterministic Speed Made Good and Corresponding Probability Level 

Fig. 13: Soil Type 
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Fig. 14: Path Planning Maps 
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Fig. 15: Deterministic Path and Probability Compared to 90% Path 

Summary and Conclusion 

In summary the data collected by KRC for the CDT event was used together with data from Ref. [8] to 

assemble a larger data set. This larger data set was used to determine the distributions that best fit the 

data and the stastical correlation between Keq and n. The DOE points needed to fit the dynamic Kriging 

(DKG) model were generated using RAMDO software and evaluated by the vendors. The DKG model was 

then used in RAMDO for carrying the uncertainty quantification of the speed made good. In comparing 

the stochastic maps given by simple and complex terramechanics they were notably different. This 

leaves room for future to determine why this may be. The stochastic mobility maps were generated, and 

path planning routes created for them. It was shown how the 90% and deterministic paths were 

different and how the deterministic path is not a reliable path, with segments of it having 0-10% 

probability of obtaining the speed provided in the deterministic map. Thus, the stochastic maps provide 
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valuable information to the decision makers planning paths or other operations for increasing mission 

success. 
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